Contents

	Ack	Acknowledgements	
	Pre	face	xvii
	PAI An i	RT 1 introduction to the subject of the plasma boundary	1
1	Sim	ple Analytic Models of the Scrape-Off Layer	6
	1.1	Solid Surfaces Are Sinks for Plasmas	6
	1.2	The Tokamak: An Example of a Low Pressure Gas Discharge Tube	. 8
	1.3	Tokamak Magnetic Fields	12
	1.4	The Scrape-Off Layer, SOL	15
		1.4.1 Limiter SOLs	15
		1.4.2 Divertor SOLs	17
	1.5	Characteristic SOL Time	19
	1.6	The 1D Fluid Approximation for the SOL Plasma	20
	1.7	The Simple SOL and Ionization in the Main Plasma	22
	1.8	1D Plasma Flow Along the Simple SOL to a Surface	26
		1.8.1 The Basic Features Reviewed	26
		1.8.2 Derivations of Results for 1D Plasma Flow in the Simple	• •
		SOL	29
	1.9	Comparison of the Simple SOL and the Complex SOL	52
		Problems	53
		References	59
2	The	e Role and Properties of the Sheath	61
	2.1	The Bohm Criterion. Historical Background	61
	2.2	The Maxwellian Velocity Distribution	64
	2.3	The Bohm Criterion; $T_i = 0$. Simple Derivation	70
	2.4	The Bohm Criterion when $T_i \neq 0$	76
	2.5	The Particle Flux Density to a Surface	78
	2.6	Potential Drop in the Sheath for Floating or Biased Surfaces	79
	2.7	Langmuir Probes	84

viii Contents

	2.8 2.9 2.10	The Sheath Heat Transmission Coefficients. Basic Treatment Some Basic Consequences of the Existence of the Sheath The Solid Surface at an Oblique Angle to B : The Chodura Sheath Additional Problems References	92 95 98 105 109
3	Expe	rimental Databases Relevant to Edge Physics	111
	3.1	Ion and Atom Back-scattering from Surfaces	111
	3.2	Particle-Induced Electron Emission	114
	3.3	Sputtering	116
		3.3.1 Physical Sputtering	118
		3.3.2 Chemical Sputtering of C by H	121
		3.3.3 The Energy of Sputtered Neutrals	124
	2 1	3.3.4 Radiation-Enhanced Sublimation, RES	125
	3.4 3.5	Atomic Databases for Ionization Dissociation and Radiation Rates	123
	5.5	3.5.1 Atomic Databases for Impurities	130
		3.5.1 Atomic Databases for Hydrogen	138
		Problems	146
		References	150
4	Simr	le SOL	153
	4.1	The Simple SOL: The Sheath-Limited Regime	153
	4.2	'Straightening Out' the SOL for Modelling Purposes	153
	4.3	Relating Density Scrape-Off Length λ_n to D_{\perp}^{SOL}	155
	4.4	Modelling λ_n , λ_{T_e} , λ_{T_i} , etc Simultaneously	158
	4.5	Relating the Properties of Main and Edge Plasmas	161
	4.6	Particle Confinement Time, τ_p	167
		4.6.1 The Case with the Hard Boundary Condition	169
		4.6.2 The Case with the Soft Boundary Condition	175
		4.6.3 The Global Recycling Coefficient	179
	4.7	The Simple versus Complex SOL	181
	4.8	Comparison of High Recycling, Strongly Radiating and Detached	193
	10	The Effects of Ionization within the SOI	105
	4.9	Parallel Temperature Gradients Along the SOL	187
	4.10	4 10 1 Calculating $T(s_{\mu})$	187
		4.10.2 Criteria for Existence of Parallel Temperature Gradients	192
	4.11	Parallel Temperature Gradients in the Context of Electron–Ion	-
		Equipartition	196
		4.11.1 An Initial Estimate of the Role of Equipartition in the SOL	196
		4.11.2 Case A. $T_e = T_i$. No <i>T</i> -Gradient	197
		4.11.3 Case B. $T_e = T_i$. Significant <i>T</i> -Gradients Exist (Very	
		Strong Collisionality)	197

		Contents	ix
	4.11.4	Case C. $T_e \neq T_i$. No Significant <i>T</i> -Gradients. Weak Collisionality (<i>The Simple SOL</i>)	199
	4.11.5	Case D. $T_e \neq T_i$. Significant Temperature Gradients Exist. Intermediate Collisionality	201
	4.11.6	Equipartition near the Target	201
	4.11.7	Caveats Concerning Criteria for Equipartition and Existence of <i>T</i> -Gradients	202
	4.11.8	Overview of the Criteria for Equipartition and <i>T</i> -Gradients. SOL Collisionality	204
	Additio	onal Problems	204
	Referen	nces	210
The	Diverto	r SOL	212
5.1	Why us	se Divertors Rather than Limiters?	212
	5.1.1	Production of Impurities by Ion Impact	213
	5.1.2	Impurity Production by Neutral Impact on Walls	214
	5.1.3	Transport of Impurities to the Main Plasma	214
	5.1.4	Removal of the Helium Impurity, Pumping	215
	5.1.5	Removal of Hydrogen, Pumping	217
	5.1.6	Efficient Use of Magnetic Volume	217
	5.1.7	Size of Plasma-Wetted Area	218
	5.1.8	Opportunity for Power Removal by Volumetric Loss Pro- cesses	219
	5.1.9	Achievement of Plasma Detachment	220
	5.1.10	Energy Confinement	220
	5.1.11	Conclusions	220
5.2	The Ba	sic Two-Point Model of the Divertor SOL	221
5.3	The Co	nduction-Limited Regime. The High Recycling Regime	230
5.4	Extens	ions to the Basic Two-Point Model. 'Corrections'	232
5.5	Includi	ng the Hydrogen Recycle Loss Energy in the Two-Point	
	Model		237
5.6	The Pla	asma-Wetted Area of Limiters and Divertors. The Parallel	
	Flux A	rea of the SOL	245
5.7	Expres	sions for the Power Scrape-Off Width, etc	252
	5.7.1	Introduction	252
	5.7.2	Case of Negligible Parallel T-Gradient	252
	5.7.3	Case of Significant Parallel T-Gradient	253
5.8	SOL C	ollisionality and the Different Divertor Regimes	264
5.9	Diverto	or Asymmetries	267
5.10	The Ef	fect of Divertor Geometry	270
5.11	The Er	godic Divertor	270
	Additio	onal Problems	273
	Referen	nces	274

5

Х	Contents

6	Plas	ma Imj	purities	277
	6.1 Introduction: Harmful and Beneficial Effects of			
		Impur	ities	277
	6.2	The T	hree Principal Links in the Impurity Chain	280
		6.2.1	The Source	281
		6.2.2	Edge Transport	282
		6.2.3	Transport in the Main Plasma	283
	6.3	Measu	ring the Impurity Source	283
	6.4	Model	ls for 1D Radial Transport	287
		6.4.1	The Engelhardt Model	287
		6.4.2	The Controlling Role of Edge Processes in Impurity Be-	
			haviour	293
		6.4.3	The Questionable Concept of 'Impurity Screening'	293
	6.5	Impur	ity Transport Parallel to B in the SOL	296
		6.5.1	Introduction	296
		6.5.2	Defining the 'Simple One-Dimensional Case' for Mod-	
			elling Impurity Retention by Divertors	297
		6.5.3	The Parallel Forces on Impurity Ions	298
		6.5.4	A Simple 1D Fluid Model of Impurity Leakage from a Divertor	303
		6.5.5	Estimating Divertor Leakage	313
	6.6	Edge 1	Impurity Source/Transport Codes	323
		6.6.1	Why Have Codes?	323
		6.6.2	Interpreting Edge Impurity Measurements Using Codes	324
		6.6.3	Edge Fluid Impurity Codes	328
		6.6.4	Monte Carlo Impurity Codes	328
	6.7	Heliur	n and Pumping	336
	6.8	Erosio	on and Redeposition of Solid Structures at the Plasma Edge	342
		Additi	ional Problems	343
		Refere	ences	355
7	The	H-Mod	le and ELMs	358
		Refere	ences	366
8	Fluc	tuation	is in the Edge Plasma	368
		Refere	ences	376
	PAR Intr	CT 2 oductio	on to fluid modelling of the boundary plasma	379
		Introd	uction to Part II	381

		Contents	xi
9	The	1D Fluid Equations	384
	9.1	Introduction	384
	9.2	The Kinetic Equation	384
	9.3	The Conservation of Particles Equation	385
	9.4	The Momentum Conservation Equation	386
	9.5	Ohm's Law	392
	9.6	The Energy Conservation Equation, T_{\parallel}	392
	9.7	The Energy Conservation Equation, T_{\perp}	396
	9.8	The Parallel Viscous Stress	397
	9.9	The Conservation Equations Summarized	399
	9.10	The Sheath-Limited Regime	400
	9.11	The Conduction-Limited Regime	401
	9.12	Self-Collisionality and the Problem of Closing the Fluid Equations	402
		References	402
10	1D N	Iodels for the Sheath-Limited SOL	404
	10.1	Introduction	404
	10.2	The 1D Isothermal Fluid Model	404
	10.3	Isothermal Model. Non-Constant Source S_p	406
	10.4	The Effect of Neutral Friction on Plasma Flow Along the SOL	406
	10.5	Other 1D Models for the Sheath-Limited SOL	408
	10.6	The Kinetic 1D Model of Tonks and Langmuir. Cold Ions	409
	10.7	Kinetic Models for $T_i \neq 0$	413
	10.8	Adiabatic, Collisionless Fluid Models	416
	10.9	Adiabatic, Strongly Collisional Fluid Models	419
	10.10	Adiabatic, Intermediate Collisional Fluid Models	419
	10.11	Comparing 1D Collisionless Kinetic and Collisionless Fluid Models	\$420
		References	422
11	1D N	Iodelling of the Conduction-Limited SOL	423
	11.1	Introduction	423
	11.2	1D Fluid Modelling for the Conduction-Limited SOL	426
		References	436
12	'Oni	on-Skin' Method for Modelling the SOL	437
	12.1	The Concept of a SOL Flux Tube	437
	12.2	The Onion-Skin Method of Modelling the SOL	444
	12.3	Code-Code Comparisons of Onion-Skin Method Solutions with	
		2D Fluid Code Solution of the SOL	447
		References	449
13	An I	ntroduction to Standard 2D Fluid Modelling of the SOL	450
		References	457

••	<i>a</i> , ,
X11	Contents

	PAR'	ГЗ	
	Plasr	na Boundary Research	459
	~		401
14	Supe	rsonic Flow along the SOL	462
	14.1	The Effect on the SOL of Supersonic Flow Into the Sheath	462
	14.2	Supersonia Solutions for an Analytic Case	404
	14.5	Supersonic Solutions for all Analytic Case	407
	14.4	References	408
15	Flow	Reversal in the SOL	471
		References	476
16	Dive	rtor Detachment	477
	16.1	Introduction	477
	16.2	Background Relevant to Divertor Detachment	478
	16.3	Experimental Observations of Divertor Detachment	483
	16.4	Understanding Detachment	492
		16.4.1 Introduction	492
		16.4.2 Low Plasma Temperatures Necessary but Not Sufficient	
		for Detachment	493
		16.4.3 The Necessity of Volumetric Momentum and Power Losses	493
		16.4.4 The Effect of Volume Recombination Acting Alone	495
		16.4.5 The Effect of Ion–Neutral Friction Acting Alone	497
		16.4.6 The Combined Effect of Ion–Neutral Friction and Volume	500
		Recombination on Detachment	502
		the UEDGE Code	505
		16.4.8 The 'Cause' versus the 'Explanation' of Detachment	508
		References	510
17	Curr	rents in the SOL	512
	17.1	Introduction	512
	17.2	Thermoelectric Currents Driven by Cross-Field Temperature Gra-	
		dients	513
		17.2.1 Case A. Segmented Limiter with $j_{\perp} = 0$	514
		17.2.2 Case B. Continuous Limiter with $j_{\perp} = 0$	514
		17.2.3 Case C. Segmented Limiter with $\sigma_{\perp}^{\text{cond}} \rightarrow \infty$	516
		17.2.4 Case D. Continuous Limiter with $\sigma_{\perp}^{\text{cond}} \rightarrow \infty$	517
	17.3	Inferring $V_{\text{plasma}}^{\text{SOL}}(r)$ from Probe Measurements of $V_{\text{float}}(r)$ and	
		$T_e(r)$	520
	17.4	Thermoelectric Currents Driven By Parallel Temperature Gradients	520
	17.5	Cross-Field Currents	525
		17.5.1 Experimental Results	525
		17.5.2 Simple Models for σ_{\perp}	527

		Contents	X111
	17.5.3 Models for σ_{\perp} in a Tokamak		530
	17.6 A Concluding Comment		535
	References		535
18	Drifts in the SOL		537
	18.1 Experimental Observations Implying the Presence	e of Drifts in the	
	SOL		537
	18.2 Definitions		539
	18.3 The Consequences of $E \times B$ Drifts		542
	18.3.1 The Radial and Poloidal $E \times B$ Drifts		542
	18.3.2 Comparison of Drift Fluxes with the Basi	c SOL Fluxes	546
	18.3.3 Comparison of Radial and Poloidal Drift	Fluxes	546
	18.3.4 The Effect of Poloidal $E \times B$ Drift on SC	JL Asymmetries	548
	18.3.5 The Effect of Radial $E \times B$ Drift on SOI 18.3.6 Comments on the Effects of Radial and H	Poloidal $E \times B$	553
	Drifts		555
	18.4 Diamagnetic Drifts and Currents in the SOL		556
	18.5 Pfirsch–Schlüter flows		561
	18.6 Heat Flux Drifts in the SOL		363
	18.7 Two Alternative Descriptions of Drifts		363
	18.8 A Concluding Comment		560
	References		- 200
19	The Relation Between SOL and Main Plasma Densi References	ty for Divertors	570 574
19 20	The Relation Between SOL and Main Plasma Densi References Extracting $\chi^{SOL}(r)$ From Target Plasma Data Using	ty for Divertors g the Onion-Skii	570 574
19 20	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method	ty for Divertors g the Onion-Skin	570 574 n 575
19 20	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{\text{SOL}}(r)$ From Target Plasma Data Using Method 20.1 The General Method	ty for Divertors g the Onion-Skii	570 574 n 575 575
19 20	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{\text{SOL}}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating $\chi_{\perp}^{\text{SOL}}$	ty for Divertors g the Onion-Skin and <i>n_u</i>	570 574 575 575 580
19 20	 The Relation Between SOL and Main Plasma Densi References Extracting χ^{SOL}_⊥(r) From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ^{SOL}_⊥ 20.3 Examples from JET 	ty for Divertors g the Onion-Skin and <i>n_u</i>	570 574 575 575 580 582
19 20	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References	ty for Divertors g the Onion-Skin and <i>n_u</i>	570 574 575 575 580 582 586
19 20 21	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References	ty for Divertors g the Onion-Skin and n_u	570 574 575 575 580 582 586
19 20 21	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOL c	ty for Divertors g the Onion-Skin and n _u gths for Divertor	570 574 575 575 580 582 586
19 20 21	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{\text{SOL}}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating $\chi_{\perp}^{\text{SOL}}$ 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , $\chi_{\perp}^{\text{SOL}}$ and the Decay Leng SOLs	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 r 588
19 20 21	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 r 588 602
19 20 21 22	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 r 588 602 603
19 20 21 22	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFES 22.1 Experimental Observations	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 588 602 603 603
19 20 21 22	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFEs 22.1 Experimental Observations 22.2 Modelling MARFEs	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 602 603 603 605
19 20 21 22	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFES 22.1 Experimental Observations 22.2 Modelling MARFES 22.3 Divertor MARFES	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 602 603 603 605 612
19 20 21 22	The Relation Between SOL and Main Plasma Densite References References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFEs 22.1 Experimental Observations 22.2 Modelling MARFEs 2.3 Divertor MARFEs References	ty for Divertors g the Onion-Skin and <i>n_u</i> gths for Diverton	570 574 575 575 580 582 586 602 603 603 605 612 614
19 20 21 22 23	The Relation Between SOL and Main Plasma Densite References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References 20.1 Examples of D_{\perp}^{SOL}, χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFEs 22.1 22.3 Divertor MARFEs References 22.3 Divertor MARFEs References The Radiating Plasma Mantle	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 602 603 603 603 605 612 614 615
19 20 21 22 23	The Relation Between SOL and Main Plasma Densite References References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFES 22.1 Experimental Observations 22.2 Modelling MARFEs 22.3 Divertor MARFEs References The Radiating Plasma Mantle References	ty for Divertors g the Onion-Skin and n_u gths for Diverton	570 574 575 575 580 582 586 603 603 603 605 612 614 615 620
19 20 21 22 23 24	The Relation Between SOL and Main Plasma Densi References Extracting $\chi_{\perp}^{SOL}(r)$ From Target Plasma Data Using Method 20.1 The General Method 20.2 A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} 20.3 Examples from JET References Measurements of D_{\perp}^{SOL} , χ_{\perp}^{SOL} and the Decay Leng SOLs References MARFES 22.1 Experimental Observations 22.2 Modelling MARFES 22.3 Divertor MARFES References The Radiating Plasma Mantle References Z -of <i>P</i> -ot and the Relation Between Them	ty for Divertors g the Onion-Skin and <i>n_u</i> gths for Diverton	570 574 575 575 580 582 586 602 603 603 605 612 614 615 620 621

xiv Contents

25	Furt	her Aspects of the Sheath	629
	25.1	The Ion Velocity Distribution at the Sheath Edge	629
	25.2	The Case of B Parallel to the Solid Surface	634
	25.3	The Bohm–Chodura Boundary Conditions and the Density Gra-	
		dient at the Entrance to the Sheaths	643
	25.4	The Sheath Boundary Conditions in the Presence of $E \times B$ and	
		Diamagnetic Drifts	645
	25.5	Expressions for the Floating Potential, Particle and Heat Flux	
		Densities Through the Sheath	646
		References	655
26	Kine	etic Effects and Corrections to Collisional Expressions	656
	26.1	Introduction	656
	26.2	Kinetic Correction for Parallel Heat Conductivity	657
	26.3	Kinetic Correction for Parallel Viscosity	664
	26.4	Kinetic Correction for the Parallel Temperature Gradient Force	
		Coefficients	664
		References	665
27	Imp	urity Injection Experiments	667
	27.1	Injection of Recycling Impurities	667
		27.1.1 Single-Reservoir Model	669
		27.1.2 The Garching Two-Chamber Model	670
		27.1.3 Modelling which Uses an Edge Impurity Code and Both	
		Divertor and Main Plasma Spectroscopic Signals	682
	27.2	Injecting of Non-Recycling Impurities	683
		27.2.1 Simple Analytic Models for the Penetration Factor (Con-	
		finement Time) Based on a 'SOL Sink Strength' Parameter	685
		27.2.2 Interpretation Using a Code Such as DIVIMP	688
		References	689
Ар	pendi	ix A Solutions to Problems	691
	Inde	X	704